3rd floor					
dead weight same as 5th			13.38	51.76	5.67
70% of 4 floors imposed load, 4×2.025					
× 0.7	=	5.67 kN/m			
2nd floor					
dead weight same as 5th			13.38	65.14	6.08
60% of 5 floors imposed load, 5×2.025					
×0.6		6.08 kN/m			
1st floor					
dead weight same as 5th			13.38	78.54	7.29
60% of 6 floors imposed load, 6×2.025		700 137 /			
× 0.6	=	7.29 kN/m			
Ground floor					
dead weight same as 5th			13.38	91.90	8.51
60% of 7 floors imposed load, 7×2.025					

8.51 kN/m

 $\times 0.6$

^a Factor 0.45 from table 3.6, BS 8110: Part 1:1985.

^b Imposed load reduction from table 2, BS 6399: Part 1.

walls will provide the resistance to wind loading. In an actual design, the designer must of course check that the structure is safe for wind blowing east-west and vice versa.

In the calculation below it has further been assumed that the walls act as independent cantilevers; and hence moments or forces are apportioned according to their stiffness.

12.5.2 Wind loads

These are calculated according to CP 3, Chapter V: Part 2. We have

$$V_{s} = VS_{1}S_{2}S_{3}$$

$$S_1 = S_2 = 1.0$$

Using ground roughness category 3, Class B, with height of the building=21.0m, from Table 3, CP3, Chapter V: Part 2

$$S_2 = 0.91$$

Therefore design wind speed is

$$V_s = 50 \times 1 \times 1 \times 0.91 = 45.5 \,\text{m/s}$$

and dynamic wind pressure is

$$q = 0.613 \times (45.5)^2 = 1269.0 \,\mathrm{N/m^2}$$

From Clause 7.3, CP3, Chapter V: Part 2, total wind force

$$F = C_f q A_e$$
 ($C_f = 1.1$, Table 10)

 $A_{\rm e}$ = effective surface area

The total maximum bending moment is

total max.
$$BM=F\times h/2$$

where h is the height under consideration. Total BM just above floor level is given for each floor by:

6th floor

$$C_t q A_e \times h/2 = 1.1 \times (1269/10^3) \times 21 \times 3 \times 3/2 = 131.9 \text{kNm}$$

5th floor

$$1.1 \times (1269/10^3) \times 21 \times 6 \times 3 = 527.6$$
kNm

• 4th floor

$$(1.1\times1269\times21/10^3)\times9\times9/2=1187.20$$
kNm

• 3rd floor

2nd floor